Frobenius Splittings of Toric Varieties

نویسنده

  • SAM PAYNE
چکیده

We discuss a characteristic free version of Frobenius splittings for toric varieties and give a polyhedral criterion for a toric variety to be diagonally split. We apply this criterion to show that section rings of nef line bundles on diagonally split toric varieties are normally presented and Koszul, and that Schubert varieties are not diagonally split in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius Splittings

Frobenius splittings were introduced by V. B. Mehta and A. Ramanathan in [6] and refined further by S. Ramanan and Ramanathan in [9]. Frobenius splittings have proven to be a amazingly effective when they apply. Proofs involving Frobenius splittings tend to be very efficient. Other methods usually require a much more detailed knowledge of the object under study. For instance, while showing that...

متن کامل

Weights in the cohomology of toric varieties

We describe the weight filtration in the cohomology of toric varieties. We present the role of the Frobenius automorphism in an elementary way. We prove that equivariant intersection homology of an arbitrary toric variety is pure. We also obtain a results concerning Koszul duality: nonequivariant intersection cohomology is equal to the cohomology of the Koszul complex IH∗ T (X)⊗ H ∗(T ).

متن کامل

Cartier Isomorphism for Toric Varieties

is an isomorphism. Here F : X −→ X denotes the Frobenius morphism on X and H denotes the a cohomology sheaf of F∗Ω•X . If the variety is not smooth, not much is known about the properties of the Cartier operator and the poor behaviour of the deRham complex in this case makes its study difficult. If one substitutes the deRham complex with the Zariski-deRham complex the situation is better. For e...

متن کامل

On the B-canonical Splittings of Flag Varieties

Let G be a semisimple algebraic group over an algebraically closed field of positive characteristic. In this note, we show that an irreducible closed subvariety of the flag variety of G is compatibly split by the unique canonical Frobenius splitting if and only if it is a Richardson variety, i.e. an intersection of a Schubert and an opposite Schubert variety.

متن کامل

Tilting Bundles via the Frobenius Morphism

Let X be be a smooth algebraic variety over an algebraically closed field k of characteristic p > 0, and F : X → X the absolute Frobenius morphism. In this paper we develop a technique for computing the cohomology groups H(X, End(F∗OX)) and show that these groups vanish for i > 0 in a number of cases that include some toric Fano varieties, blowups of the projective plane (e.g., Del Pezzo surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008